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Background and Motivation



Discovering Explanatory Models

The early stages of any science focus on descriptive laws that 
summarize empirical regularities. 

Mature sciences instead emphasize the creation of models that 
explain phenomena in terms of: 

• Inferred components and structures of entities

• Postulated causal chains of interacting variables

• Hypothesized processes about entities’ interactions

Explanatory models move beyond description to provide deeper 
accounts linked to theoretical constructs.  
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Quantitative Explanatory Models

There has been substantial research on computational discovery 
that has addressed either: 

• Inducing numeric laws that describe quantitative observations

• Abducing structural accounts to explain qualitative phenomena

But scientists in advanced fields often combine both activities  
to create models that: 

• Postulate unobserved structural relations among entities

• Incorporate functional forms with numeric parameters 

Can we also develop systems that discover such quantitative 
explanatory models? 
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Constructing Quantitative Explanations

We have seen some research on the computational discovery 
of quantitative explanations: 

• Inferring abstract causal models / structural equation models 
(Glymour et al., 1987; Spirtes et al., 1993)

• Identifying sets of linked differential equations (Dzeroski & 
Todorovski, 1993; Stolle & Bradley, 1998; Koza et al., 2001)

These combined distinct numeric equations into qualitative 
structures, but they remained reasonably shallow.  

Can we also automate the discovery of quantitative models that 
postulate unobserved variables and processes? 
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An Example: The Ross Sea Ecosystem

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

Formal accounts of ecosystem 
dynamics are often cast as sets of 
differential equations. 

Here four equations describe the 
concentrations of phytoplankton, 
zooplankton, nitrogen, and detritus 
in the Ross Sea over time. 

Such models can match observed 
variables with some accuracy. 
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A Deeper Account of Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, which slows the 
latter’s increase and also produces 
detritus.
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Processes in Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = – 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, which slows the 
latter’s increase and also produces 
detritus.
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Processes in Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen, 
its concentration increases and the 
nitrogen decreases. This continues 
until the nitrogen is exhausted, 
which leads to a phytoplankton die 
off. This produces detritus, which 
gradually remineralizes to replenish 
nitrogen. Zooplankton grazes on 
phytoplankton, which slows the 
latter’s increase and also produces 
detritus.
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A Process Model for the Ross Sea

model Ross_Sea_Ecosystem

variables: phyto, zoo, nitro, detritus
observables: phyto, nitro

process phyto_loss(phyto, detritus)
equations: d[phyto,t,1] = -0.307 ´ phyto

d[detritus,t,1] = 0.307 ´ phyto

process zoo_loss(zoo, detritus)
equations: d[zoo,t,1] = -0.251 ´ zoo

d[detritus,t,1] = 0.251 ´ zoo

process zoo_phyto_grazing(zoo, phyto, detritus)
equations: d[zoo,t,1] = 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.385 ´ 0.495 ´ zoo
d[phyto,t,1] = -0.495 ´ zoo

process nitro_uptake(phyto, nitro)
equations: d[phyto,t,1] = 0.411 ´ phyto

d[nitro,t,1] = -0.098 ´ 0.411 ´ phyto

process nitro_remineralization(nitro, detritus)
equations: d[nitro,t,1] = 0.005 ´ detritus

d[detritus,t,1 ] = -0.005 ´ detritus

We can reformulate such an 
account by restating it as a  
quantitative process model. 

Such a model is equivalent    
to a standard differential 
equation model, but it makes 
explicit assumptions about   
the processes involved. 

Each process indicates that 
certain terms in equations 
must stand or fall together. 
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Inductive Process Modeling

!!!

Time-series data

Generic processes

Process 
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process 
Modeling

exponential_growth(Organism1)
  rate R = Organism1
  derivatives  d[Organism1,t] = a * R
  parameters a = 0.75

holling(Organism2, Organism1)
  rate R = Organism2 * Organism1
  derivatives   d[Organism2,t] = b * R,
                     d[Organism1,t] = c * R
  parameters  b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
  rate R = X
  derivatives  d[X,t] = a * R
  parameters a > 0

holling(X [predator], Y [prey]) [predation]
  rate R = X * Y
  derivatives   d[X,t] = b * R, d[Y, t] = c * R
  parameters  b > 0, c < 0

Inductive process modeling constructs explanations of time series 
from background knowledge (Langley et al., ICML-2002). 

Models are stated as sets of differential equations organized into 
higher-level processes. 20



Some Generic Processes

process exponential_loss(S, D) process remineralization(N, D)
variables: S{species}, D{detritus} variables: N{nutrient}, D{detritus}
parameters: a [0, 1] parameters: p [0, 1]
equations: d[S, t, 1] = -1 ´ a ´ S equations:

d[D, t, 1] = a ´ S d[N, t, 1] = p ´ D
d[D, t, 1] = -1 ´ p ´ D

generic process grazing(S1, S2, D) process constant_inflow(N)
variables: S1{species}, S2{species}, D{detritus} variables: N{nutrient}
parameters: r [0, 1], g [0, 1] parameters: n [0, 1]
equations: d[S1, t, 1] = g ´ r ´ S1 equations: d[N, t, 1] = n

d[D ,t, 1] = (1 - g) ´ r ´ S1
d[S2, t, 1] = -1 ´ r ´ S1

generic process nutrient_uptake(S, N)
variables: S{species}, N{nutrient}
parameters: t [0, ¥], b [0, 1], µ [0, 1]
conditions: N > t
equations: d[S, t, 1] = µ ´ S 

d[N, t, 1] = -1 ´ b ´ µ ´ S

Our aquatic ecosystem library 
contained about 25 generic 
processes, including ones with 
alternative functional forms for 
loss and grazing processes. 

These form the building blocks
from which to compose models.
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Searching the Space of Model Structures

1. Instantiate known generic processes with specific entities, 
subject to type specifications;

2. Combine these instantiated processes into candidate model 
structures, rejecting disconnected structures;  

3. For each model structure, carry out search through parameter 
space to find good coefficients;

4. Return the parameterized model with the best overall score 
(e.g., lowest squared error).

We developed multiple ‘IPM’ systems that induce process models 
from generic components in four stages:

We have reported variants on this approach in numerous papers 
(Bridewell et al., MLj, 2008; Bridewell & Langley, TopiCS, 2010). 



Searching the Space of Model Parameters

1. Selected random initial values that fall within ranges specified 
in the generic processes;

2. Improved these parameters using a conjugate gradient method 
until it reaches a local optimum;

3. Repeated the process N times and selected the best-scoring set 
of parameter values.

To estimate the parameters for each generic model structure, our  
induction algorithms:

This multi-level method gave reasonable fits to time-series data 
for some domains, but it was computationally intensive. 

Each step in the gradient descent required simulating the model’s 
trajectory to calculate its error. 



Results on Training Data from Ross Sea

We provided IPM with 188 
samples of phytoplankton, 
nitrate, and ice measures 
taken from the Ross Sea.  

From 2035 distinct model 
structures, it found accurate 
models that limited phyto 
growth by the nitrate and 
the light available. 

Some high-ranking models 
incorporated zooplankton, 
whereas others did not. 



Results on Test Data from Ross Sea

Generalization to a second 
year’s data benefited from 
treating initial zooplankton 
concentration as a free 
model parameter. 

Another good-fitting model 
suggested that the nitrogen 
to carbon ratio varies as a 
function of available light. 



Other Results with Process Modeling

power systems protist dynamics

hydrology biochemical kinetics



Extensions to Inductive Process Modeling

• Inductive revision of quantitative process models
• Asgharbeygi et al. (Ecological Modeling, 2006)

• Hierarchical generic processes that constrain search
• Todorovski, Bridewell, Shiran, and Langley (AAAI-2005)

• An ensemble-like method that mitigates overfitting effects 
• Bridewell, Bani Asadi, Langley, and Todorovski (ICML-2005)

• An EM-like method that estimates missing observations
• Bridewell, Langley, Racunas, and Borrett (ECML-2006)

In addition, we have extended the basic framework to support:

These extensions made the modeling framework more robust 
along a number of fronts. 
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• Specify a quantitative process model of the target system;

• Display and edit the model’s structure and details graphically;

• Simulate the model’s behavior over time and situations;

• Compare the model’s predicted behavior to observations; 

• Invoke a revision module in response to detected anomalies.

Because few scientists want to be replaced, we also developed 
an interactive environment, PROMETHEUS, that lets users:

The environment offers computational assistance in forming and 
evaluating models but lets the user retain control. 

Interfacing with Scientists



The PROMETHEUS System

We embedded these ideas in PROMETHEUS, an interactive system for 
process model construction (Bridewell et al., IJHCS, 2007). 

24



Constraint-Guided Process Modeling



Knowledge and Search in Discovery

Traditional treatments of problem solving hold that knowledge 
reduces the amount of search. 

• But adding generic processes leads to a combinatorial increase
in the number of candidate structures.

Yet scientists are not overwhelmed by the size of model spaces 
and they reject many structures as unacceptable. 

This suggests two forms of scientific background knowledge:
• components used to generate candidate model structures
• constraints on allowable combinations of such components

This distinction seldom occurs in the literature, but it appears  
key to understanding scientific explanation. 



Constraints on Ecosystem Models

Our discussions with ecologists confirmed that constraints play 
an important role in model acceptability. 

Some plausible constraints for models of ecosystems include:  

We have developed a formal notation that lets our systems use  
such constraints during inductive process modeling. 

• There must be at most one growth process for each species. 

• A limited growth process cannot occur without a nutrient 
limitation process and vice versa. 

• There must be no more than one predation process between 
any two species. 



Inducing Process Models with Constraints

• Encoded modular constraints on process combinations

• Used these constraints to eliminate unacceptable models

• Reduced search through the model space, which
• Led to far more efficient model construction

• Produced little or no increase in generalization error

• Improved the comprehensibility of generated models 

Our extended framework for the discovery of process models: 

The resulting systems were more robust in their ability to induce 
process models (Bridewell & Langley, TopiCS, 2010).



The SC-IPM System

1. Used background knowledge to generate process instances; 
2. Combined them to produce possible model structures, rejecting 

ones that violate known constraints;   
3. For each candidate model structure: 

a. Carried out gradient descent search through parameter space 
to find good coefficients; 

b. Invoked random restarts to decrease chances of local optima; 
4. Returned the parameterized model with lowest squared error or 

a ranked list of models. 

Bridewell and Langley’s (2010) SC-IPM system incorporated 
these ideas in that it:

Experiments with SC-IPM produced far more reliable results. 
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Discovering Model Constraints

• Used inductive process modeling to generate a set of models;
• Separated these into accurate and inaccurate model structures;
• Described each model structure in terms of relational literals; 
• Learned relational rules that can distinguish the two classes; 
• Transformed the rules into constraints on model structures; and
• Used these constraints to guide search on future modeling tasks. 

In related work, Todorovski et al. (AAAI-2012) reported another  
system that:  

Experiments revealed this produced a tenfold speedup on novel 
modeling tasks with little or no loss in accuracy. 



Rate-Based Process Modeling



Critiques of SC-IPM

Despite these successes, the SC-IPM system suffers from four 
key drawbacks, in that it:
• Evaluates full model structures, so disallows heuristic search
• Requires repeated simulation to estimate model parameters

• Invokes random restarts to reduce chances of local optima

• Despite these steps, it can still find poorly-fitting models

As a result, SC-IPM does not scale well to complex modeling 
tasks and it is not reliable. 

In recent research, we have developed a new framework that 
avoids these problems (Langley & Arvay, AAAI-2015). 
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A New Process Formalism

SC-IPM allowed processes with only algebraic equations, only 
differential equations, and mixtures of them. 

In our new modeling formalism, each process P must include: 
• A rate that denotes P’s speed / activation on a given time step
• An algebraic equation that describes P’s rate as a parameter-

free function of known variables
• One or more derivatives that are proportional to P’s rate

This notation has important mathematical properties that assist 
model induction. 

The new framework also comes closer to Forbus’ (1984) notion 
of qualitative processes. 
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A Sample Process Model

Consider a process model for a simple predator-prey ecosystem: 
exponential_growth[aurelia]

rate        r = aurelia
parameters  A = 0.75
equations   d[aurelia] = A * r

exponential_loss[nasutum]
rate        r = nasutum
parameters  B = -0.57
equations   d[nasutum] = B * r

holling_predation[nasutum, aurelia]
rate        r = nasutum * aurelia
parameters  C = 0.0024

D = -0.011
equations   d[nasutum] = C * r

d[aurelia] = D * r

Each derivative is proportional to the algebraic rate expression. 
28



A Sample Process Model

Consider a process model for a simple predator-prey ecosystem: 
exponential_growth[aurelia]

rate        r = aurelia
parameters  A = 0.75
equations   d[aurelia] = A * r

exponential_loss[nasutum]
rate        r = nasutum
parameters  B = -0.57
equations   d[nasutum] = B * r

holling_predation[nasutum, aurelia]
rate        r = nasutum * aurelia
parameters  C = 0.0024

D = -0.011
equations   d[nasutum] = C * r

d[aurelia] = D * r

d[aurelia] = 0.75 * aurelia – 0.011 * nasutum * aurelia
d[nasutum] = 0.0024 * nasutum * aurelia – 0.57 * nasutum

This model compiles into a
set of differential equations
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Some Generic Processes

Generic processes have a very similar but more abstract format: 
exponential_growth(X [prey]) [growth]

rate        r = X
parameters  A = (> A 0.0)
equations   d[prey] = A * r

exponential_loss(X [predator]) [loss]
rate        r = predator
parameters  B = (< B 0.0)
equations   d[prey] = B * r

holling_predation(X [predator], Y [prey]) [predation]
rate        r = X * Y
parameters  C = (> C 0.0)

D = (< D 0.0)
equations   d[predator] = C * r

d[prey] = D * r

As before, these are building blocks for constructing models.
29



RPM: Regression-Guided Process Modeling

This suggests a new approach to inducing process models that 
our RPM system implements: 
• Generate all process instances consistent with type constraints
• For each process P, calculate the rate for P on each time step
• For each dependent variable X, 
• Estimate dX/dt on each time step with center differencing, 
• Find a regression equation for dX/dt in terms of process rates
• If r2 for equation is high enough, add it to the process model

This approach factors the model construction task into a number 
of tractable components. 
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Two-Level Heuristic Search in RPM

31

Equations for later variables
are constrained by processes 
included in earlier ones



Heuristics for Model Induction

RPM uses four heuristics to guide its search through the space   
of process models: 
• A model may include only one process instance of each type 

(e.g., only one variant on predation(nasutum, aurelia) )
• Parameters must obey numeric constraints that appear in generic 

forms of processes 
• If an equation for one variable includes a process P, then P must 

appear in equations for other variables that P mentions
• Incorporate variables that participate in more processes earlier 

than less constrained ones

These heuristics reduce substantially the amount of search that 
RPM carries out during model induction.
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Behavior on Natural Data

RPM matches the main trends for a simple predator-prey system. 

d[aurelia] = 0.75 * aurelia − 0.11 * nasutum * aurelia [r2 = 0.84]     
d[naustum] = 0.0024 * nasutum * aurelia − 0.57 * nasutum [r2 = 0.71]

 

D
e
r
iv

a
t
iv

e
 v

a
lu

e

-200

-100

0

100

200

Time               

12 14 16 18 20 22 24

Aurelia (observed)  Nasutum (observed)

Aurelia (predicted)  Nasutum (predicted)



We compared RPM to SC-IPM, its predecessor, on synthetic data 
for a three-variable predator-prey ecosystem. 

SC-IPM finds more accurate models with more restarts, but also 
takes longer to find them. 
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We compared RPM to SC-IPM, its predecessor, on synthetic data 
for a three-variable predator-prey ecosystem. 

RPM found accurate models far more reliably than SC-IPM and, 
at worst, ran 800,000 faster than the earlier system. 
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With smoothing, RPM can handle 10% noise on synthetic data. 

The system also scales well to increasing numbers of generic 
processes and variables in the target model. 

Handling Noise and Complexity
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Behavior on Complex Synthetic Data

RPM also finds an accurate model for a 20-organism food chain. 

This suggests the system scales well to difficult modeling tasks. 
35
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Further Extensions



Adapting Models to New Settings

In some cases, one can adapt an existing model to observations 
rather inducing it from scratch. 

Recent work (Arvay & Langley, ACS-2015) has extended RPM to: 

• Detect anomalies / identify problematic differential equations

• Reestimate the parameters for these equations

• If necessary, remove or add processes to equations

Model adaptation is appropriate when the environment changes 
in some ways but largely remains the same. 

Anomaly 
detection

Parameter 
revision

Structure 
revision
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Effects of Environmental Changes

Changes in the structure and parameters of a few equations leads to 
substantial changes in all trajectories. 

Initial 
model

Revised 
model   
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Detecting Anomalous Derivatives

Plotting predicted derivatives against observed values lets RPM 
identify equations it should revise. 

Here d[x4] is well predicted but other derivatives are divergent. 
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Revising a Process Model

Once RPM has identified equations that make poor predictions,  
it revises them by: 
• Reestimating their parameters using multivariate regression

• If needed, removing / adding processes from / to each equation

The system handles each differential equation separately, but 
changes to earlier ones can constrain later revisions. 

Studies with synthetic data 
show that model adaptation 
scales much better than 
induction from scratch. 
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Selective Induction of Process Models

In even more recent work, we have developed SPM, a system 
that extends RPM further by: 

• Delaying binding of some variables in generic processes until it 
finds evidence of a relationship; 

• Combining sampling of processes with backward elimination to 
induce more complex equations; 

• Finding multiple equations for each dependent variable and then 
searching for ways to combine them into consistent models. 

These extensions give SPM greater coverage, scalability, and 
reliability than its predecessor. 
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Increased Model Coverage

RPM could not induce some chemical process models because 
processes have the same rate; SPM avoids this problem by: 

• Instantiating initially only variables in a generic process that 
determine  its rate expression; 

• Binding other variables that a process influences only when 
finding equations for their derivatives. 

These extensions let SPM discover chemical reaction networks 
that RPM could not handle. 

42

Table 2: Differential equations for a chemical system with six
variables that interact through eight distinct reactions. SPM
can reconstruct this model, with minor parameter differences,
from time series that it generates whereas RPM cannot.

dX1/dt = 1.1 ·X2 ·X3� 1.6 ·X1
dX2/dt = 1.8 ·X1� 1.5 ·X2� 1.0 ·X2 ·X3 + 0.9 ·X5 ·X6
dX3/dt = 1.9 ·X1 + 1.1 ·X2� 1.3 ·X3� 1.3 ·X2 ·X3
dX4/dt = 0.9 ·X2 + 0.8 ·X3� 2.5 ·X4 ·X5 + 0.5 ·X5 ·X6
dX5/dt = 0.9 ·X3� 1.8 ·X4 ·X5 + 0.9 · Z
dX6/dt = 2.3 ·X4 ·X5� 0.8 ·X5 ·X6� 0.5 ·X6

Z that keeps other variables from reaching a steady state. An-
other chemical data set involved seven chemicals participat-
ing in 12 reactions, including a time-varying influx.

SPM encountered no difficulty inducing either reaction
network from multivariate trjectories with at least 80 time
steps. In the first case, the system generated 22 process in-
stances from three generic processes, then took 1,000 samples
of six rate terms to identify each component equation. In the
second case, SPM generated 46 processes from four generic
processes, then took 15,000 samples of ten rate terms. Runs
on the first data set required 14.7 ± 0.21 CPU seconds on
average, whereas those for the second took a mean of 111.8
± 0.6 seconds. In contrast, RPM generated 63 process in-
stances from analogous generic structures, and it could not
induce either target model. The reason, as explained earlier,
was that its greedy algorithm combines with eager binding of
variables in processes, leading it to include incorrect process
instances it could not retract during the later stages of model
construction. These runs demonstrate that SPM can induce
chemical process models that its predecessor cannot handle.

4.2 Scalable Induction of Differential Equations

As noted earlier, SPM’s approach to finding individual differ-
ential equations differs substantially from that of its predeces-
sor. RPM carries out exhaustive search for the simplest equa-
tion with an acceptable r2 score, starting with one-term can-
didates and adding terms until reaching a maximum number.
The new system combines sampling of rate terms (processes)
with backward elimination to identify subsets that are good
predictors of derivatives. This suggests a second hypothesis:

• As the number of terms in a target equation increases, their

induction time for SPM grows more slowly than for RPM.

To test this prediction, we examined the behavior of their
modules for equation induction in isolation. We generated
synthetic data in which derivatives were a linear function of
different numbers – from one to ten – of processes with ran-
dom valued rates. The random data ensured that the terms in
each equation were not highly correlated, thus containing re-
dundant information. We ran each system ten times on each
equation and measured the CPU time needed to find it. We
fixed the number of samples at 10,000 and the number of sam-
pled rate terms at 13 for all SPM runs.

Figure 3 presents the results of this experiment. RPM actu-
ally finds simpler equations more rapidly than SPM, as they
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Figure 3: Average time for RPM and SPM to find target equa-
tions, in CPU seconds, with different numbers of rate terms
(processes).

are consistent with its simplicity bias. However, this changes
for equations with five processes, at which point SPM be-
comes faster. In fact, there were so many combinations of
nine-term equations that RPM could not finish generating
them, making it unable to complete its runs. Growth in CPU
time for SPM was linear, as it depended on the number of
samples and equations specified by the user.

SPM’s sampling approach does not guarantee that it will
find the appropriate equation. The correct set of rates must
appear in the sampled set and feature selection must correctly
identify them as relevant. We can calculate the probability
that the correct combination of rates will appear in a sample
as

�T
S

��T�S
S�R

�
/
�T
R

�
, where T is the total number of processes,

R is the number of rates in the target equation, and S is the
size of the sample. Additional sampling increases the odds of
finding an equation but increases CPU time further, which is a
natural tradeoff. Nevertheless, it seems clear the new system
scales better to equation complexity than its precursor.

4.3 Improved Induction of Consistent Models

Another difference between our approach to process model
induction and its precursor lies in their search for consistent
models. Rather than relying on a greedy method aided by pro-
cess constraints, SPM first finds a set of alternative equations
for each dependent variable and then uses depth-first search
to find all ways to combine them into models. This suggests
a final hypothesis about the two systems:

• SPM induces a more complete set of consistent process

models than RPM and has greater chances of recovering

the target model.

This claim seems straightforward to test, but we have already
seen that RPM’s greedy search is sufficient to find complex
ecological models, and its inability to induce chemical reac-
tion networks is due mainly to eager binding of variables in
processes. However, we can modify SPM’s parameters to ap-
proximate greedy search through the space of process models.

Thus, we ran a parametric study in which we compared the
behavior of the multi-equation SPM with a variant that finds
only one differential equation for each dependent variable.
We ran both versions on the same synthetic data sets used
earlier, some generated from predator-prey models and others



RPM’s exhaustive search for equations becomes intractable if the 
target involves more than five terms. 

Instead, SPM combines backward elimination of rate terms with 
repeated sampling, giving time linear with equation complexity. 

Better Scaling to Complexity
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Greater Reliability of Induction

RPM’s greedy search sometimes led it down dead ends; SPM 
avoids this problem by: 
• Finding multiple differential equations for each target variable; 
• Carrying out exhaustive depth-first search for ways to combine 

them into consistent models. 

This strategy increased SPM’s probability of inducing one or 
more models. 
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Table 3. The probability of finding a target model by greedy and multi-equation variants of SPM on ecological
and chemical data sets, along with average CPU time.

Greedy SPM Multi-Equation SPM

Percent CPU Percent CPU

Nas-Aur 100 0.004±.002 100 0.004±.001
Aquatic Ecosyst 100 0.03±.012 100 0.12±.007
Predator Prey 6a 100 0.01±.003 100 0.03±.004
Predator Prey 6b 100 0.83±.004 100 2.63±.008
Predator Prey 20 100 0.81±.028 100 4.10±.100

Chemistry A 0 1.17±2.03 100 14.7±.210
Chemistry B 0 1.65±1.27 100 111.8±.610

Thus, we ran a parametric study in which we compared the behavior of the multi-equation SPM
with a variant that finds only one differential equation for each dependent variable. We ran both
versions on the same synthetic data sets used earlier, some generated from predator-prey models
and others from chemical reaction networks. For each condition, we ran the systems 20 times and
recorded both the total number of consistent models induced, as well as the percentage of times they
found the target model. Table 2 shows that, on the five ecosystem data sets, each variant reliably
found a single model that was equivalent to the target. In contrast, on the two chemical data sets,
the ‘greedy’ version was unable to find the correct model, whereas the full SPM generated several
consistent models, in each case finding the target. Naturally, the full variant took longer to run (14.7
and 111.8 CPU seconds, respectively) than the greedy version (1.17 and 1.65 CPU seconds), but
there is a natural tradeoff between time and coverage. The chemistry B data set was particularly
challenging and needed more time to find consistent models reliably. We should emphasize that all
additional models SPM found were internally consistent in terms of processes and had comparable
r2 scores. One cannot distinguish them given the data and the system’s background knowledge.

5. Related Research

We have already explained how SPM builds on a long tradition of research on inductive process
modeling. Our system addresses the same basic discovery task as other work in this paradigm, al-
though it takes advantage of ideas introduced by Langley and Arvay (2015) to make the problem
more tractable. We have retained RPM’s assumptions that each process has an associated rate that
is determined by an algebraic expression and derivatives that are proportional to this rate. This idea
comes originally from Forbus’s (1984) Qualitative Process Theory, which used a similar notation for
qualitative models of physical systems. SPM introduces improved mechanisms for inducing quan-
titatve process models, but it benefits from many earlier ideas. The use of background knowledge in
inductive logic programming is similar in spirit but very different in practice, as it acquires models
from relational rather than numeric data and it typically relies on separate-and-conquer methods that
are inappropriate for linked sets of differential equations.

10



Concluding Remarks



Related and Future Research

Our approach builds on ideas from earlier research, including: 
• Qualitative representations of scientific models (Forbus, 1984)
• Inducing differential equations (Todorovski, 1995; Bradley, 2001)
• Heuristic search and multiple linear regression
• Delayed commitment and feature selection

Our plans for extending the SPM system include: 
• Handling parametric rate expressions (gradient descent)
• Dealing with unobserved variables (iterative optimization)
• Discovering new processes (search for rate expressions)

Together, these should extend SPM’s coverage and usefulness 
even further.  
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Applications of Process Modeling

Scalable methods for process model induction would be useful  
in many practical settings, including: 

• Elucidating new reaction pathways in biochemistry

• Understanding ecological dynamics of human microflora

• Designing reaction pathways for chemical production

• Designing metabolic pathways for synthetic biology

Computational tools for scientific discovery should let us not 
only interpret observations, but generate new behavior. 
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Summary Comments

• Incorporates a formalism that is familiar to many scientists

• Uses background knowledge about the problem domain
• Produces meaningful results from moderate amounts of data 

• Generates models that explain, not just describe, observations

• Can scale well both to many processes and complex models

Inductive process modeling is a novel and promising approach 
to discovering scientific models that:

Although our work has focused on ecological modeling, the key 
ideas extend to chemistry and other domains. 

For more information, see http://www.isle.org/process/ .
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Conclusion

Scientific discovery does not involve any mystical or irrational 
elements; we can study and even partially automate it. 

Our explanation of this fascinating set of mechanisms relies on: 

• Carrying out search through a space of laws or models

• Utilizing operators for generating structures and parameters

• Guiding search by data and by knowledge about the domain

Systems discover laws and models stated in the formalisms and 
concepts familiar to scientists. 

This paradigm has already started to aid the scientific enterprise, 
and its importance will only grow with time. 
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In Memoriam

Herbert A. Simon 
(1916 – 2001)

In 2001, the field of computational scientific discovery lost two of 
its founding fathers. 

Both were interdisciplinary researchers who published in computer 
science, psychology, philosophy, and statistics.
Herb Simon and Jan Zytkow were excellent role models for us all.  

Jan M. Zytkow
(1945 – 2001)


